1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
| import time
import torch import torchvision.utils as vutils from tqdm import tqdm
from base import BaseTrainer from utils import WarmupPolyLR, runningScore, cal_text_score
class Trainer(BaseTrainer): def __init__(self, config, model, criterion, train_loader, validate_loader, metric_cls, post_process=None): super(Trainer, self).__init__(config, model, criterion) self.show_images_iter = self.config['trainer']['show_images_iter'] self.train_loader = train_loader if validate_loader is not None: assert post_process is not None and metric_cls is not None self.validate_loader = validate_loader self.post_process = post_process self.metric_cls = metric_cls self.train_loader_len = len(train_loader) if self.config['lr_scheduler']['type'] == 'WarmupPolyLR': warmup_iters = config['lr_scheduler']['args']['warmup_epoch'] * self.train_loader_len if self.start_epoch > 1: self.config['lr_scheduler']['args']['last_epoch'] = (self.start_epoch - 1) * self.train_loader_len self.scheduler = WarmupPolyLR(self.optimizer, max_iters=self.epochs * self.train_loader_len, warmup_iters=warmup_iters, **config['lr_scheduler']['args']) if self.validate_loader is not None: self.logger_info( 'train dataset has {} samples,{} in dataloader, validate dataset has {} samples,{} in dataloader'.format( len(self.train_loader.dataset), self.train_loader_len, len(self.validate_loader.dataset), len(self.validate_loader))) else: self.logger_info('train dataset has {} samples,{} in dataloader'.format(len(self.train_loader.dataset), self.train_loader_len))
def _train_epoch(self, epoch): self.model.train() epoch_start = time.time() batch_start = time.time() train_loss = 0. running_metric_text = runningScore(2) lr = self.optimizer.param_groups[0]['lr']
for i, batch in enumerate(self.train_loader): if i >= self.train_loader_len: break self.global_step += 1 lr = self.optimizer.param_groups[0]['lr']
for key, value in batch.items(): if value is not None: if isinstance(value, torch.Tensor): batch[key] = value.to(self.device) cur_batch_size = batch['img'].size()[0]
preds = self.model(batch['img']) loss_dict = self.criterion(preds, batch) self.optimizer.zero_grad() loss_dict['loss'].backward() self.optimizer.step() if self.config['lr_scheduler']['type'] == 'WarmupPolyLR': self.scheduler.step() score_shrink_map = cal_text_score(preds[:, 0, :, :], batch['shrink_map'], batch['shrink_mask'], running_metric_text, thred=self.config['post_processing']['args']['thresh'])
loss_str = 'loss: {:.4f}, '.format(loss_dict['loss'].item()) for idx, (key, value) in enumerate(loss_dict.items()): loss_dict[key] = value.item() if key == 'loss': continue loss_str += '{}: {:.4f}'.format(key, loss_dict[key]) if idx < len(loss_dict) - 1: loss_str += ', '
train_loss += loss_dict['loss'] acc = score_shrink_map['Mean Acc'] iou_shrink_map = score_shrink_map['Mean IoU']
if self.global_step % self.log_iter == 0: batch_time = time.time() - batch_start self.logger_info( '[{}/{}], [{}/{}], global_step: {}, speed: {:.1f} samples/sec, acc: {:.4f}, iou_shrink_map: {:.4f}, {}, lr:{:.6}, time:{:.2f}'.format( epoch, self.epochs, i + 1, self.train_loader_len, self.global_step, self.log_iter * cur_batch_size / batch_time, acc, iou_shrink_map, loss_str, lr, batch_time)) batch_start = time.time()
if self.tensorboard_enable and self.config['local_rank'] == 0: for key, value in loss_dict.items(): self.writer.add_scalar('TRAIN/LOSS/{}'.format(key), value, self.global_step) self.writer.add_scalar('TRAIN/ACC_IOU/acc', acc, self.global_step) self.writer.add_scalar('TRAIN/ACC_IOU/iou_shrink_map', iou_shrink_map, self.global_step) self.writer.add_scalar('TRAIN/lr', lr, self.global_step) if self.global_step % self.show_images_iter == 0: self.inverse_normalize(batch['img']) self.writer.add_images('TRAIN/imgs', batch['img'], self.global_step) shrink_labels = batch['shrink_map'] threshold_labels = batch['threshold_map'] shrink_labels[shrink_labels <= 0.5] = 0 shrink_labels[shrink_labels > 0.5] = 1 show_label = torch.cat([shrink_labels, threshold_labels]) show_label = vutils.make_grid(show_label.unsqueeze(1), nrow=cur_batch_size, normalize=False, padding=20, pad_value=1) self.writer.add_image('TRAIN/gt', show_label, self.global_step) show_pred = [] for kk in range(preds.shape[1]): show_pred.append(preds[:, kk, :, :]) show_pred = torch.cat(show_pred) show_pred = vutils.make_grid(show_pred.unsqueeze(1), nrow=cur_batch_size, normalize=False, padding=20, pad_value=1) self.writer.add_image('TRAIN/preds', show_pred, self.global_step) return {'train_loss': train_loss / self.train_loader_len, 'lr': lr, 'time': time.time() - epoch_start, 'epoch': epoch}
def _eval(self, epoch): self.model.eval() raw_metrics = [] total_frame = 0.0 total_time = 0.0 for i, batch in tqdm(enumerate(self.validate_loader), total=len(self.validate_loader), desc='test model'): with torch.no_grad(): for key, value in batch.items(): if value is not None: if isinstance(value, torch.Tensor): batch[key] = value.to(self.device) start = time.time() preds = self.model(batch['img']) boxes, scores = self.post_process(batch, preds,is_output_polygon=self.metric_cls.is_output_polygon) total_frame += batch['img'].size()[0] total_time += time.time() - start raw_metric = self.metric_cls.validate_measure(batch, (boxes, scores)) raw_metrics.append(raw_metric) metrics = self.metric_cls.gather_measure(raw_metrics) self.logger_info('FPS:{}'.format(total_frame / total_time)) return metrics['recall'].avg, metrics['precision'].avg, metrics['fmeasure'].avg
def _on_epoch_finish(self): self.logger_info('[{}/{}], train_loss: {:.4f}, time: {:.4f}, lr: {}'.format( self.epoch_result['epoch'], self.epochs, self.epoch_result['train_loss'], self.epoch_result['time'], self.epoch_result['lr'])) net_save_path = '{}/model_latest.pth'.format(self.checkpoint_dir) net_save_path_best = '{}/model_best.pth'.format(self.checkpoint_dir)
if self.config['local_rank'] == 0: self._save_checkpoint(self.epoch_result['epoch'], net_save_path) save_best = False if self.validate_loader is not None and self.metric_cls is not None: recall, precision, hmean = self._eval(self.epoch_result['epoch'])
if self.tensorboard_enable: self.writer.add_scalar('EVAL/recall', recall, self.global_step) self.writer.add_scalar('EVAL/precision', precision, self.global_step) self.writer.add_scalar('EVAL/hmean', hmean, self.global_step) self.logger_info('test: recall: {:.6f}, precision: {:.6f}, f1: {:.6f}'.format(recall, precision, hmean))
if hmean >= self.metrics['hmean']: save_best = True self.metrics['train_loss'] = self.epoch_result['train_loss'] self.metrics['hmean'] = hmean self.metrics['precision'] = precision self.metrics['recall'] = recall self.metrics['best_model_epoch'] = self.epoch_result['epoch'] else: if self.epoch_result['train_loss'] <= self.metrics['train_loss']: save_best = True self.metrics['train_loss'] = self.epoch_result['train_loss'] self.metrics['best_model_epoch'] = self.epoch_result['epoch'] best_str = 'current best, ' for k, v in self.metrics.items(): best_str += '{}: {:.6f}, '.format(k, v) self.logger_info(best_str) if save_best: import shutil shutil.copy(net_save_path, net_save_path_best) self.logger_info("Saving current best: {}".format(net_save_path_best)) else: self.logger_info("Saving checkpoint: {}".format(net_save_path))
def _on_train_finish(self): for k, v in self.metrics.items(): self.logger_info('{}:{}'.format(k, v)) self.logger_info('finish train')
|